Stochastic Solutions for the Two-Dimensional Advection-Diffusion Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Solutions for the Two-Dimensional Advection-Diffusion Equation

In this paper, we solve the two-dimensional advection-diffusion equation with random transport velocity. The generalized polynomial chaos expansion is employed to discretize the equation in random space while the spectral/hp element method is used for spatial discretization. Numerical results which demonstrate the convergence of generalized polynomial chaos are presented. Specifically, it appea...

متن کامل

Solutions of diffusion equation for point defects

An analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the Robin-type boundary conditions. The distributions of point defects for different migration lengths of defects have been calculated. The exact analytical solution was used to verify the approximate numerical solutio...

متن کامل

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation

We present a new algorithm based on Wiener-Hermite functionals combined with Fourier collocation to solve the advection equation with stochastic transport velocity. We develop different stategies of representing the stochastic input, and demonstrate that this approach is orders of magnitude more efficient than Monte Carlo simulations for comparable accuracy.

متن کامل

A Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method

In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2004

ISSN: 1064-8275,1095-7197

DOI: 10.1137/s106482750342684x